
Single-Source Shortest Path Tree for Big Dynamic Graphs

Sara Riazi
University of Oregon

Eugene, OR 97403, USA
Email: riazi@uoregon.edu

Sriram Srinivasan
University of Nebraska

Omaha, NE 68106, USA
Email: sriramsrinivas@unomaha.edu

Sajal K. Das
Missouri University of

Science and Technology
Rolla, MO 65409, USA
Email: sdas@mst.edu

Sanjukta Bhowmick
University of North Texas
Denton, TX 76203, USA

Email: sanjukta.bhowmick@unt.edu

Boyana Norris
University of Oregon

Eugene, OR 97403, USA
Email: norris@cs.uoregon.edu

Abstract—Computing single-source shortest paths
(SSSP) is one of the fundamental problems in graph
theory. There are many applications of SSSP including
finding routes in GPS systems and finding high cen-
trality vertices for effective vaccination. In this paper,
we focus on calculating SSSP on big dynamic graphs,
which change with time. We propose a novel distributed
computing approach, SSSPIncJoint, to update SSSP
on big dynamic graphs using GraphX. Our approach
considerably speeds up the recomputation of the SSSP
tree by reducing the number of map-reduce operations
required for implementing SSSP in the gather-apply-
scatter programming model used by GraphX.

Keywords-Single-Source Shortest Path (SSSP), Map-
Reduce, Apache Spark, Big Dynamic Graphs

I. INTRODUCTION

Discovering the single-source shortest path (SSSP)
tree is a classical graph theory problem with many
real-world applications such as finding routes in maps
and social network analysis. However, many graphs
evolve over time, which necessitates the recomputation
of the SSSP tree. For very large dynamic graphs,
this recomputation requires significant resources and
is time consuming, thus motivating the development
of new algorithms that can quickly recover the updated
SSSP tree without recomputing it from scratch.

This problem is exacerbated when graphs are so
large that they do not fit in the memory of a single
machine. In these cases, the graphs are analyzed using
scalable parallel approaches that can use distributed
memory and out-of-core processing. An example of

such distributed memory software is GraphX [7],
which has been developed on top of Apache Spark.
GraphX enjoys the fault-tolerance and distributed com-
puting provided by the data-parallel environment of
Apache Spark. Apache Spark supports map-reduce
(MR) operations over immutable distributed data struc-
tures called resilient distributed dataset (RDD) [19],
which requires the algorithms such as SSSP to be
defined as a set of (expensive) MR operations over
RDD representation of graphs. However, GraphX does
not come with built-in support for dynamic graphs;
instead, we can apply batch updates by mapping the
current snapshot of a graph to the next snapshot.

We can re-execute the SSSP algorithm on the new
snapshot to obtain the new SSSP tree. However,
reusing the computation from the previous snapshot
may save significant execution time, especially for very
large graphs. Reducing the execution time is even more
critical when expensive computing services are being
used for parallel processing.

In this paper, we explore an algorithmic approach
toward reusing the computation from previous snapshot
in order to compute the SSSP tree for the current
snapshot. Specifically, we introduce SSSPIncJoint, a
new parallel incremental SSSP algorithm, which re-
covers the SSSP tree over a series of graph snapshots
that represent a dynamic graph. Our key contribution
is this new algorithm, which reduces high-overhead
data-parallel operations by tracking the changes among
snapshots that affect the SSSP tree.

We experimentally show that SSSPIncJoint is more



efficient (up to 2.2x speedup) than recomputing the
SSSP for every snapshot of large dynamic graphs.

II. STATIC SSSP ON SPARK

To enable computations on large graphs that do not
fit in a single machine’s memory, GraphX provides a
vertex-centric gather-apply-scatter (GAS) distributed-
memory parallel programming model (first introduced
by Pregel [12]). In a GAS model, an algorithm is
developed from a vertex point of view, and in general
includes three different steps: (i) gathering messages
from its neighboring vertices, (ii) updating its state,
and (iii) generating messages for its neighbors. GraphX
iteratively executes these steps, and each iteration
of these steps is called a superstep. GraphX stores
a graph as two RDDs, one for edges and another
for vertices. It also provides triplets view as a joint
representation of an edge attribute and the attributes on
its incident vertices. As it provided by the name view,
the triplets are dynamically constructed by shipping
vertex attributes to the computation nodes where the
corresponding edge partitions are located. This makes
MR operations on triplets more expensive than MR
operations on edge or vertex RDDs.

Each superstep of a GAS model can viewed as a
set of MR operations over the triplet, edge and vertex
RDDs. To gather the messages for each vertex, each
triplet is mapped to messages using a sendMessage
function that has access to edge and vertex attributes
of its source and destination vertices, and then a
reduceMessage function combines the messages to
generate an RDD containing pairs of vertex ID and
message data. To apply the messages, a new vertex
RDD for the vertices that received any message is
constructed by joining the existing vertex RDD and the
new message RDD, and then the old vertex attributes
and the message data are mapped to new vertex at-
tributes using a vertexProgram function. Finally the
graph’s vertex RDD is updated by joining the new
vertex RDD with the existing one to make sure that
the vertex partitioning remains the same, otherwise,
constructing the triplet view becomes very expensive
for the next round.

III. DYNAMIC SSSP ON SPARK

Dynamic graphs can be viewed as a series of graph
snapshots that evolve over time, where each snapshot

is constructed by applying an update batch to its pre-
decessor snapshot. In our setting, we assume that the
update batches are queued until the computation on the
current snapshot is completed. GraphX does not have
built-in support for dynamic graphs since it depends
on immutable RDDs for graph representation.1

An updated graph can be constructed by mapping
the old edge RDD to the new one to reflect the new
changes (edge insertion and deletion) and constructing
a new graph using the new edge RDDs. A simple
approach for computing SSSP over dynamic graphs is
to re-run SSSP for each snapshot separately. However,
the main goal is to expedite the repetitious computation
on dynamic graphs by reusing the state of vertices in
the current snapshot as much as possible, so we have
to transfer the old vertex attributes to the new graph
using the join operations over RDDs.

Reusing computation for GAS is introduced by
GraphInc [4], which memoizes received messages and
vertex states from all supersteps. In each superstep,
a vertex participates in GAS if its current state is
different from the memoized state for the same su-
perstep on the previous snapshot. A vertex runs the
vertexProgram using the received messages and also
using the memoized messages from its neighbors that
have participated in the same superstep of the previous
snapshot, but not in the current snapshot. Therefore,
GraphInc runs SSSP for the new snapshot for the same
number of supersteps, but with fewer messages in each
superstep as shown in Figure1.c.

A naive implementation of GraphInc on top of
GraphX suffers from two problems: first, it does not
reduce the number of supersteps, which are executed
using expensive join operations over large RDDs, and
second, in an MR framework such as GraphX, we
have to store the memoized information as the vertex
attributes and frequently ship them across different
computation nodes (workers in Spark), which makes
memoization impractical for large networks, especially
for the social networks with power-law degree distri-
butions. In order to scale to large social networks, the
size of vertex attributes must not depend on the degree
of vertices, which motivates using fixed-size attributes
such as tuples. An example of variable-size attributes

1IndexedRDD [1] was introduced to expedite modifying a graph,
however, it is not officially supported by GraphX due to fault-
tolerance issues. Therefore, we focused on constructing dynamic
graphs merely using the functionality provided by GraphX.



Figure 1. a) The original graph, weights not shown for readability. b) The SSSPBase algorithm based on GAS model. The gray nodes
indicate the vertices that participate in a superstep. The red arrows is the messages labeled with shortest paths. c) The GraphInc execution
after adding an edge between vertices C and D. The dotted edges shows the memoized messages that have been saved.

would be if each vertex keeps the distance to source
of all its neighbors. We only store the distance to
source, the parent of each vertex, and an extra flag for
capturing the affected vertices due to a batch update.

In contrast to GraphInc, our memoized state does
not provide enough information to recompute the state
of vertices, thus requiring message propagation to take
place. However, we can limit the number of required
messages by considering the details of the SSSP algo-
rithm.

An update batch includes a set of edge insertions and
deletions.2 Inserting or deleting edges directly affects
the target vertices of the edges (immediate affected) or
indirectly affects the descendants of the target vertices
(causal affected). We call a vertex insert-affected or
delete-affected if it is affected (immediate or causal)
by edge insertion or deletion, respectively.

If the update batch only includes edge insertions,
the states of affected vertices (both immediate or
causal) converge to the correct states if we continue
running the SSSP algorithm. This happens because
edge insertion can only shorten the distance of a vertex
to the source, and a vertex generates a message for
its neighbor only if it can reduce the distance-to-
source (DTS) of the target vertex, otherwise the vertex
does not participate in the superstep. Therefore, the
neighbors of insert-affected vertices will participate in
the message passing in order to adjust the state of
the insert-affected vertices. This update propagates to
adjust the DTS of all insert-affected vertices.

2For simplicity, we only discuss edge insertion and deletion, but
the same reasoning applies for weight decrease and increase.

The situation for edge deletion is more complicated
because deleting an edge may increase the DTS of
affected vertices, and in turn, the neighbors of delete-
affected vertices may not participate in message pass-
ing because the DTS of delete-affected vertices is at
least as large as their DTS before the edge deletion
happening.

If an update batch contains any edge deletion, the
SSSP algorithm may not correct the delete-affected
vertices, so we have to mark or invalidate them to
make sure that we can correct their states using the
SSSP algorithm. This marking phase (invalidation)
starts with the immediate delete-affected vertices and
propagates to their descendants in the SSSP tree us-
ing the GAS model. Therefore, in each superstep of
the invalidation phase, each marked vertex generates
messages for its children in the SSSP tree. If a vertex
receives a message, it changes its status to marked.
After convergence, all the delete-affected vertices are
marked.

By setting the state of the marked vertices to∞, we
can make sure the SSSP does converge to the correct
values. Therefore, after the invalidation phase, we can
rely on the SSSP algorithm as a correction phase to
adjust the state of all affected vertices (insert-affected
and delete-affected).

These two steps (invalidation and correction) com-
prise our vanilla SSSPInc Algorithm 1, which exactly
computes the SSSP tree for dynamic graphs. However,
the invalidation phase is also expensive since it requires
join operations over large RDDs to propagate the marks
to all delete-affected vertices, and experimentally we
observe that the invalidation phase may take as long as



the correction phase (that considers all delete-affected
and insert-affected vertices). Therefore, we introduce
two variations of the basic SSSPInc: SSSPIncApprox
and SSSPIncJoint in order to reduce the required time
for recomputing SSSP for large dynamic graphs.

Algorithm 1 High-level SSSPInc
Run SSSP on the primary graph.
for each update batch do

Invalidate all delete-affected vertices.
Apply the update batch.
Adjust the state of vertices.

Algorithm 2 High-level SSSPIncApprox
Run SSSP on the primary graph.
for each update batch do

Invalidate the immediate delete-affected vertices.
Apply the update batch.
Adjust the state of vertices.

IV. SSSPINCJOINT

The invalidation propagation phase of SSSPInc is
extremely expensive because it requires multiple MR
and join operations over very large RDDs in order
to pass few messages (with respect to the size of
the graph). The number of required supersteps for
the invalidation phase depends on the position of
immediate delete-affected vertices in the SSSP tree.
Therefore, SSSPInc may have even more supersteps
than running the SSSP algorithm from scratch on the
current snapshot.

To expedite the message propagation for the invali-
dation phase, one can prune the graph to only the SSSP
tree, which significantly reduces the size of the edge
RDD. But we should also note that pruning requires
an MR operation over triplets. The overhead cost of
pruning may be amortized over message propagation
steps, but in our setting we didn’t find it useful.

An alternative approach is to ignore the incorrect
state of causal delete-affected vertices. In that case, the
DTS of the causal delete-affected vertices is only an
approximation of the true value. We call this approach
SSSPIncApprox, and is described in Algorithm 2.

To achieve the same efficiency as SSSPIncApprox,
but with more accurate DTS values, we try to run the

invalidation and correction phase jointly. Although the
joint execution may result in inexact values, we can
guarantee that if it converges, it would be to the exact
values. We revisit the convergence assumption after
describing the algorithm.

To jointly execute the invalidation and correction, we
must make sure that the correction does not truncate
the invalidation phase. We first mark all the immediate
delete-affected vertices. In each superstep, a marked
vertex sends marking messages to its children in the
current SSSP tree. To make sure that a delete-affected
vertex at least remains marked for one superstep, the
neighbors of a marked vertex do not send any DTS
value for the marked vertex. Therefore, if a vertex is
marked it can propagate the mark to its children in one
superstep. After propagating the mark, the vertex clears
itself and sets its DTS value to ∞, then removes its
parent in the tree. This happens in the vertexProgram.
Therefore, in the next supersteps, its neighbors start
sending their DTS to the already cleared vertex. To
avoid loops, a vertex never sends DTS to its current
parent in the SSSP tree, however, longer cycles are still
possible but less likely. Algorithm 3 shows the GAS
model for SSSPIncJoint.

Proposition: SSSPIncJoint converges to the exact
single-source shortest path value or never converges.

Proof. Suppose that the edge euv is removed and
also suppose that there exists an edge eyv such that
y belongs to the subtree rooted at v. Based on these
assumptions, there exists a cycle including v and y. Let
z be any vertex in this cycle, including u and v, with
an edge exz such that x belongs to the subtree rooted
at the source of the original SSSP tree. Note that if the
latter condition is not met, the graph is not strongly
connected after removing edge euv. In SSSPIncJoint,
v is marked, and y sends y.distance + eyv.weight
to v and becomes the parent of v. However, y is
also a descendant of v, so it will receive the mark
token and a new DTS value from its parent based
on the DTS of vertex v, and since node y is the
parent of v, it passes the mark token to v and the
new DTS value. This cycle monotonically increases
the DTS values of vertices in the cycle. Therefore,
eventually x.distance+ exz.weight < z.distance, so
z changes its parent to x and breaks the cycle. And
after another round of message passing in the cycle, all
DTS values become exact. If there is no such vertex x



(i.e. the graph is not strongly connected after removing
the edges), then DTS values of vertices in the cycle
increase infinitely, and the algorithm never converges.

Algorithm 3 SSSPIncJoint
//s: Source vertex for the SSSP algorithm
//euv : edge from u to v.
//msg: (source, distance, mark)
//vertex attributes: (isMarked, distance, parent)
//u→ v : msg means u generates msg for v
procedure SENDMESSASGE(euv)

if u.isMarked then
if v.isMarked then

No message
else if v.parent = u then //v is a child of u

u→ v: (u, ∞, true)
else

No message
else if v.isMarked then

if u.parent 6= v then //v is not the parent of u
u→ v: (u, euv .weight + u.distance, false)

else
No message

else if euv .weight + u.distance < v.distance then
u→ v: (u, euv .weight + u.distance, false)

else
No message

procedure MERGEMESSAGES(a, b)
mark ← a.mark or b.mark
if a.distance < b.distance then

(a.source, a.distance, mark)
else

(b.source, b.distance, mark)
procedure VERTEXPROGRAM(u, msg)

if u = s then
(false, 0.0, s)

else
if msg.mark then

(true, ∞, ∞)
else if u.distance > msg.distance then

(false, msg.distance, msg.source)
else

(false, u.distance, u.source)

V. EXPERIMENTS

We evaluate the performance of SSSPInc, SSSPIn-
cApprox, and SSSPIncJoint on three very large real-
world social network graphs: Friendster, Twitter-MPI,

and Twitter3. We also run our experiments on a very
large syntactic random graph generated by R-MAT:
with parameters: a=0.55, b=0.15, c=0.15, d=0.15. Ta-
ble I shows the characteristics of these datasets.

We assume that a primary graph and an update batch
in the form of edge events (insert or delete) are given
as input. To construct a primary graph and update batch
from a static graph, we randomly select an α fraction
of edges of the static graph without replacement. β per-
cent of events are edge deletion, and the rest are edge
insertion. A primary graph is formed by removing the
edges corresponding to insertion events from the static
graph. The number of edge insertions and deletions for
each update batch is shown in Table II.

Inserting an edge may introduce a new vertex if
the source or destination vertices are not in the graph.
Therefore, we remove standalone vertices appearing as
a result of edge removal from the static graph; they will
be added to the graph as new vertices when we add
the edges back.

Table I
VERTICES AND EDGES OF THE REAL-WORLD AND SYNTHETIC

GRAPHS IN OUR TEST SUITE.

Name Num. of Vertices Num. of Edges Type

RMAT 339,201,984 4,252,445,904 Directed
Friendster 68,349,466 2,586,147,869 Directed
Twitter-MPI 52,579,682 1,963,263,821 Directed
Twitter 41,637,597 1,453,833,084 Directed

The baseline is to re-run the SSSP algorithm for
each snapshot without considering the dynamic nature
of the graph. We call this method SSSPBase.

We use the vertex with the highest degree as the
source for the SSSP algorithm. All algorithms are im-
plemented using the GraphX library of Apache Spark
v. 2.3. For GraphX, we use ten Spark workers on a
cluster with ten dual Intel Xeon E5-2690v4 processors.
Each worker has access to 20 cores (for a total of 200
cores) and 120GB of memory (total 1.2TB memory).

We do not use GraphInc in our comparison because
by using the suggested memoization, we have to store
all messages in attributes of vertices. This would dra-
matically increase the size of vertex attributes, making
shipping the vertices to the computation nodes very

3These graphs are the three largest graphs available on the
Konnect graph repository: http://konect.uni-koblenz.de/networks/



Table II
THE CHARACTERISTICS OF UPDATE BATCHES FOR DIFFERENT GRAPHS.

α = 0.1%, β = 1% α = 0.1%, β = 10% α = 1%, β = 1%
Insert Delete Insert Delete Insert Delete

RMAT 4,250,418 42,647 3,867,390 429,833 42,521,392 429,474
Friendster 2,559,344 25,949 2,327,102 258,373 25,592,403 258,992
Twitter-MPI 1,941,750 19,856 1,764,937 196,681 19,444,189 196,481
Twitter 1,453,304 14,796 1,321,018 146,888 14,532,098 147,270

costly. Moreover, the number of messages depends on
the degree of vertices, thus for social network graphs
with power-law degree distributions, some of vertices
have to store prohibitively large number of messages.

A. Results and Discussion

We report the execution time of SSSPBase, SSSPInc,
SSSPIncApprox, and SSSPIncJoint for our three dif-
ferent update batches in Figure 2. The execution time
depends on the number of supersteps, as well as the
size of the graph (number of edges and vertices),
which determines execution time of each superstep.
Figure 3 shows the number of supersteps of different
algorithms for batch α = 0.1%, β = 1%. Comparing
to the same execution time for the same batch in
Figure 2, we conclude that the ranking of algorithms
with respect to the number supersteps is often the same
as their ranking with respect to the execution time. The
differences are explainable by the execution time of
each superstep, which also depends on the number of
active vertices participating in the message passing.

In general, SSSPInc is often slower than SSSPBase,
and the difference is significant when we increase
the number of edge deletions as in the batch α =
0.1%, β = 10%. This happens because the invalidation
phase is expensive since it needs to run several super-
steps. We also show the number of supersteps required
for the invalidation and correction phases, as well as
the execution time for each phase in Figure 4. The
reported numbers are for batch α = 0.1%β = 1%. The
execution time of invalidation phase is considerable
comparing to the execution time of the correction
phase.

SSSPIncApprox, which only has one step of in-
validation (for immediate delete-affected vertices), is
always better than SSSPInc by saving multiple su-
persteps of invalidation phase. SSPIncApprox is also
always better than SSSPBase. The one-step invalida-

tion of SSSPIncApprox has not been included in the
number of supersteps required for SSSPIncApprox.
We notice, from the execution of SSSPInc, that the
number of invalidated vertices is negligible compared
to the number of the vertices in the graph (less than
0.001% of vertices), which indicates that the accuracy
of shortest-path distance values found by SSSPIncAp-
prox is above 99.9% comparing to the exact SSSP.

SSSPIncJoint is always better or equivalent to
SSSPIncApprox and is always better than SSSPBase
and SSSPInc. SSSPIncJoint and SSSPIncApprox often
share the same number of supersteps, which suggests
that SSSPIncJoint successfully combines the correction
and invalidation phases.

As we mentioned earlier, SSSPIncJoint may not
converge if deleting the edges partitions the graph into
disconnected components, but SSSPIncJoint in all of
the experiments converges and finds the exact DTS for
all the vertices comparing to our SSSPBase.

Finally, to see how balanced the workload distribu-
tion over the workers is, we show the processing time
of each worker for batch α = 0.1%, β = 1% applied
to the Friendster graph in Figure 5. We find that the
workload is evenly distributed among the workers.

VI. RELATED WORK

GraphTau [11] proposes a paradigm of pause-shift-
resume, in which whenever a new batch of updates is
ready, GraphTau pauses the current computation and
updates the underlying graph and resume the compu-
tation with the previous state of the vertices. GraphTau
cannot guarantee the correctness of the computation.

Chronos [8] and ImmortalGraph [13] optimize GAS
operations across different snapshots. They suppose
accessing to all snapshots in advance and batch the op-
erations for each vertex/edge over different snapshots
and run batches in parallel using a locality-aware batch
scheduling. In the incremental setting, when given a set



Figure 2. The execution time (in seconds) of SSSPBase, SSSPInc, SSSPIncApprox, and SSSPIncJoint for different update batches.

Figure 3. Total number of GAS supersteps for running each
algorithm.

of graph snapshots, it processes the first snapshot and
batches the other snapshot reusing the computation of
the first snapshot.

Similarly, Tegra [10] operates over all snapshots,
however, Tegra does not batch all snapshots together
but runs every GAS round over all snapshots before
continuing with the next round, so save the redundant
computation.

BLADYG [2] is a block-centric framework, which
partition the graph into blocks and assigns each block
to a worker. When a new edge comes, it updates
the corresponding block and the corresponding worker
may communicate to other workers to propagate the
update.

In [5] they use GraphInc which uses memoization
and is not scalable for large networks which we use for
our experiments. Among other related papers [18] and
[6] do not report any experimental scalability results
and their code base is not available for comparison.

There are a few implementations of sequential SSSP
on dynamic networks such as Ramalingam et al. [15],
Narvez et al. [14]. Bauer et al. [3] proposed SSSP
algorithm for dynamic networks using batch updates.
Vora et al. [17] have proposed an approach that uses

approximation while calculating SSSP on streaming
graphs. Srinivasan et al. [16] recently proposed an
approach for finding SSSP on dynamic networks, how-
ever it is based on shared-memory parallelism. Ingole
et al. [9] have proposed a GPU implementation of
SSSP on dynamic networks.

VII. CONCLUSION

We introduce an algorithmic approach to compute
the SSSP tree for dynamic graphs on GraphX. Our ap-
proach, SSSPIncJoint 4, jointly finds the vertices with
incorrect state and corrects their states. SSSPIncJoint
is computationally more efficient than computing the
SSSP from scratch and also more efficient than two-
phase approaches that complete finding the vertices
with incorrect states before start correcting their values.

ACKNOWLEDGMENT

Sanjukta Bhowmick and Sriram Srinivasan are supported
by the NSF CCF Award #1533881 and #1725566. Boyana
Norris and Sara Riazi are supported by the NSF CCF Award
#1725585. Sajal Das is supported by the NSF CCF Awards
#1533918 and #1725755.

REFERENCES

[1] IndexedRDD for Apache Spark. https://github.com/
amplab/spark-indexedrdd.

[2] Sabeur Aridhi, Alberto Montresor, and Yannis Vele-
grakis. BLADYG: A graph processing framework for
large dynamic graphs. Big Data Research, 9:9–17,
September 2017. arXiv: 1701.00546.

[3] Reinhard Bauer and Dorothea Wagner. Batch dynamic
single-source shortest-path algorithms: An experimen-
tal study. In Jan Vahrenhold, editor, Experimental
Algorithms, pages 51–62, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

4Source code and instructions to reproduce our scalability results
are available on https://github.com/DynamicSSSP/SSSPIncJoint-



Figure 4. Total number GAS supersteps (left) and execution time (right) for invalidation and correction phase in SSSPInc.

Figure 5. Apache Spark workers participation in SSSPInc for
update batch α = 0.1%, β = 0.1% for Friendster graph.

[4] Zhuhua Cai, Dionysios Logothetis, and Georgos
Siganos. Facilitating real-time graph mining. In
CloudDb, 2012.

[5] Zhuhua Cai, Dionysios Logothetis, and Georgos
Siganos. Facilitating real-time graph mining. pages
1–8. ACM Press, 2012.

[6] Wenfei Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu,
Jiaxin Jiang, Zeyu Zheng, Bohan Zhang, Yang Cao,
and Chao Tian. Parallelizing Sequential Graph Com-
putations. pages 495–510. ACM Press, 2017.

[7] Joseph E Gonzalez, Reynold S Xin, Ankur Dave,
Daniel Crankshaw, Michael J Franklin, and Ion Stoica.
Graphx: Graph processing in a distributed dataflow
framework. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Imple-
mentation, OSDI 14, pages 599–613, Broomfield, CO,
USA, 2014.

[8] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan
Yang, Lidong Zhou, Vijayan Prabhakaran, Wenguang
Chen, and Enhong Chen. Chronos: A graph engine for
temporal graph analysis. In Proceedings of the Ninth
European Conference on Computer Systems, page 1.
ACM, 2014.

[9] A. Ingole and R. Nasre. Dynamic shortest paths using
javascript on gpus. 2015.

[10] Anand Padmanabha Iyer. Time-evolving graph pro-
cessing on commodity clusters, 2017.

[11] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das,
and Ion Stoica. Time-evolving graph processing at
scale. In Proceedings of the Fourth International
Workshop on Graph Data Management Experiences
and Systems - GRADES ’16, pages 1–6, Redwood
Shores, California, 2016. ACM Press.

[12] Grzegorz Malewicz, Matthew H Austern, Aart JC
Bik, James C Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: A system for large-scale
graph processing. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of
data, pages 135–146, 2010.

[13] Youshan Miao, Wentao Han, Kaiwei Li, Ming Wu,
Fan Yang, Lidong Zhou, Vijayan Prabhakaran, Enhong
Chen, and Wenguang Chen. Immortalgraph: A system
for storage and analysis of temporal graphs. ACM
Transactions on Storage (TOS), 11(3):14, 2015.

[14] P. Narvaez, Kai-Yeung Siu, and Hong-Yi Tzeng. New
dynamic algorithms for shortest path tree computation.
IEEE/ACM Transactions on Networking, 8(6):734–
746, December 2000.

[15] Ganesan Ramalingam and Thomas Reps. On the
computational complexity of dynamic graph prob-



lems. Theoretical Computer Science, 158(1-2):233–
277, 1996.

[16] Sriram Srinivasan, Sara Riazi, Boyana Norris, Sajal
Das, and Sanjukta Bhowmick. A shared-memory
algorithm for updating single-source shortest paths in
large weighted dynamic networks. In Proceedings
of the 25th IEEE International Conference on. High
Performance Computing, Data, and Analytics (HIPC),
November 2018.

[17] Keval Vora, Rajiv Gupta, and Guoqing Xu. Kick-
Starter: Fast and accurate computations on streaming
graphs via trimmed approximations. pages 237–251.
ACM Press, 2017.

[18] Charith Wickramaarachchi, Charalampos Chelmis, and
Viktor K. Prasanna. Empowering fast incremental
computation over large scale dynamic graphs. pages
1166–1171. IEEE, May 2015.

[19] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J
Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation. USENIX Association, 2012.


