
Distributed-Memory Vertex-Centric Network
Embedding for Large-Scale Graphs*

Sara Riazi
Department of Computer and Information Science

University of Oregon
Eugene, OR 97403, USA

riazi@uoregon.edu

Boyana Norris
Department of Computer and Information Science

University of Oregon
Eugene, OR 97403, USA

bnorris2@uoregon.edu

Abstract—Network embedding is an important step in many
different computations based on graph data. However, existing
approaches are limited to small or middle size graphs with
fewer than a million edges. In practice, web or social network
graphs are orders of magnitude larger, thus making most current
methods impractical for very large graphs. To address this prob-
lem, we introduce a new distributed-memory parallel network
embedding method based on Apache Spark and GraphX. We
demonstrate the scalability of our method as well as its ability
to generate meaningful embeddings for vertex classification and
link prediction on both real-world and synthetic graphs.

I. INTRODUCTION

Network embedding is an important step in solving many

graph problems including link prediction, vertex classification,

and clustering. Network embedding aims to learn a low

dimensional vector representation for vertices of a graph.

However, existing approaches do not scale to very large graphs

with billions of vertices and edges. One solution is to use

distributed-memory systems and out-of-core computation.

Among distributed-memory systems, frameworks such as

the Apache Spark-based GraphX [1] are of particular interest

to us because they offer a map-reduce-based approach to

expressing parallel algorithms for graph computations.

In order to take advantage of such distributed graph pro-

cessing frameworks, we need to design new map-reduce [2]

network embedding algorithms. In general, following the

previous work for learning general network embedding [3],

[4], [5], we use the structural properties of a network to train

an embedding. A common assumption underlying existing

methods and our new algorithm is that we expect that the

embedding of a vertex is more similar to the embeddings of

its neighbors rather than to the embedding of a random vertex

outside of its neighborhood. We enforce this objective with

approximate maximum likelihood training of the embedding

in which the partition function is approximated using negative

samples. This training requires lookup access to the embedding

of vertices in a neighborhood, as well as vertices that lie

outside of the neighborhood. However, lookup access in map-

reduce frameworks is prohibitively expensive, which neces-

sitates careful consideration in developing map-reduce based

network embedding algorithms. In this paper, we introduce

This work was supported by the NSF CCF Award #1725585.

such an algorithm, and experimentally show that we can train

network embeddings for very large graphs. We evaluate the

new algorithm’s accuracy and parallel scalability on a set of

real-world networks.

Our key contributions include the following.

• A discussion of the limitations of GraphX for implement-

ing existing network embedding algorithms.

• A new map-reduce-friendly message propagation model

for learning vertex-centric network embeddings, which

propagates the gradients instead of the embedding.

• The use of random graphs to construct negative sampling,

which is necessary for approximate maximum likelihood

training.

• A new GraphX based vertex-centric network embedding

(VCNE) algorithm based on gradient propagation and

random graphs that performs well on a range of real-

world problems and synthetic graphs and can be applied

to large problems that cannot be handled by current

embedding approaches.

II. PARALLEL GRAPH FRAMEWORKS

Applying traditional graph algorithms to extremely large

graphs requires distributed processing as well as out-of-core

computation. Therefore, several parallel graph frameworks

such as GraphX [1] and Giraph [6] have been developed

on top of data-parallel systems, such as Apache Spark and

Hadoop, respectively. As a result, they provide graph process-

ing APIs using distributed data processing models such as

map-reduce [2]. In map-reduce, data is converted to key-value

pairs and then partitioned onto nodes. A map-reduce system

consists of a set of workers that are coordinated by a master

process. The master process assigns partitions to workers, and

then workers apply a user-defined map function to the key-

value pairs, resulting in intermediate key-value pairs stored

on the local disks of workers. Apache Spark defines the map-

reduce model in term of operation over distributed collection

objects called resilient distributed datasets (RDDs). RDDs [7]

are immutable collections of objects that are partitioned across

different Spark nodes in the network.

An RDD is transformed into another RDD using transfor-

mation instructions, such as map and filter. Transformations

in Spark are lazy, which means that Spark does not apply

137

2019 IEEE 5th International Conference on Big Data Intelligence and Computing (DATACOM)

978-1-7281-4117-6/19/$31.00 ©2019 IEEE
DOI 10.1109/DataCom.2019.00029

transformations immediately. Instead, it constructs a directed

acyclic graph (DAG) of data parts and transformations fol-

lowed by final steps as actions. Then it executes the formed

DAG by sending it as several tasks to Spark nodes. The

actions in Spark reduce RDDs to values. For example, count
computes the number of records in RDDs, so it needs all the

transformation to be applied first, and then it returns the result.

Because Spark is a data-parallel computation system,

GraphX implements graph operations based on the data-

parallel operations available in Spark, such as join, map, and

reduce. GraphX represents graphs using two RDDs, one for

vertices and another for edges.

However, handling graphs in a data-parallel computation

system is more complex than map-reduce operations since the

vertices should be processed in the context of their neighbors.

To address that, GraphX introduces edge triplets, which join

the structure of vertices and edge RDDs. Each triplet carries

an edge attribute and the attributes of vertices incident to that

edge. Therefore, by grouping the triplets on the id of the

source or destination vertex, one can access the value of all

the neighbors of each vertex. Moreover, since the triplets are

distributed, if the neighbors of a vertex are located on different

machines, then Spark workers have to communicate with each

other to construct the result. Therefore, different strategies

for distributing graphs over partitions result in significant

differences in communication and storage overheads. GraphX

supports both edge-cut and vertex-cut graph partitioning strate-

gies.

GraphX also provides a vertex-centric programming model

for developing distributed graph algorithms. Vertex-centric

programming models such as Pregel [8] are widely used for

reimplementing sequential algorithms in graph-parallel frame-

works such as Apache Giraph or GraphX. In a vertex-centric

programming model, we develop an algorithm from a vertex

point of view, which in general includes three different steps:

gathering messages from its neighboring vertices, updating

its state, and generating messages for its neighbors. The

graph-parallel framework iteratively executes these steps in

one super-steps until no more messages are produced by any

vertex. GraphX implements all this functionality using map-

reduce operations over edge triplets.

III. VERTEX-CENTRIC NETWORK EMBEDDING

The goal of vertex-centric network embedding is to learn a

low-dimensional vector for each vertex in the graph such that

the vector representation carries the structural properties of the

graph. Formally, for graph G(V, E) of vertex set V and edge

set E , we want to learn a d-dimensional vector representation

ui for each i ∈ V such that d� |V|.
Existing approaches to learning vector representations [3],

[4], [5], [9], [10] aim to encode the neighborhood of a vertex

(its structural properties) into a low-dimensional space. Other

properties of vertices, such as attributes, labels, and relations

can also be incorporated into the vector representation of the

vertex [11], [12], [13], [14].

In general, a graph embedding approach is vertex-centric-

friendly if the embedding of each vertex is a function of

only the embeddings of its neighbors. For example, LINE-

1st [4] computes the embedding using first-order proximity

by optimizing the following objective function:

max
u

∑

(i,j)∈E
wijσ(u

T
i uj), (1)

in which ui and uj are vector representations of vertex i and

j, respectively, σ is a sigmoid function, and wij is the edge

weight. We can rewrite Eq. 1 as

max
u

∑

i

∑

j∈N(i)

wij log σ(u
T
i uj), (2)

where N(i) is the set of neighbors of vertex i.
More powerful representation learning methods, such as

LINE second-order proximity defines the conditional proba-

bility of vertex vj as the context of the vertex vi:

p(vj |vi) =
exp(uT

j ui)
∑|V |

j=1 exp(u
T
j ui)

, (3)

where |V | is the number of vertices in the graph, and mini-

mizes the KL-divergence between empirical distribution
wij

wi

and p(vj |vi), where wi =
∑

j wij . This is resulted in the

following optimization problem:
∑

(i,j)∈E

wij

wi
log p(vj |vi). (4)

Similarly this equation can also be written in a vertex-centric

manner by factorizing over vertices:
∑

i

∑

j∈N(i)

wij

wi
log p(vj |vi). (5)

The main problem arises in the computing of the normalization

part of p(vj |vi):

log p(vj |vi) = uT
j ui − log

|V |∑

j=1

exp(uT
j ui) (6)

The term log
∑|V |

j=1 exp(u
T
j ui) is intractable to compute,

but can be estimated using negative samples. However, in order

to have a vertex-centric approximation, we replace it with∑di

j=1 u
T
j ui, which is a lower bound of log

∑|V |
j=1 exp(u

T
j ui)

using Jensen’s inequality. Therefore our final objective func-

tion becomes:

max
u

∑

i

1

wi

∑

j∈N(i)

wiju
T
i uj +

di∑

j /∈N(i)

−uT
i uj . (7)

The above objective enforces the similarity if the embed-

dings of neighbors and the dissimilarity of embeddings of

random vertices selected among non-neighbor nodes (negative

samples), contrasting them to learn the embedding of each

vertex.

Negative samples ensure that the objective function does

not find a trivial solution (e.g., the embeddings of all vertices

138

become the same). Negative sampling simply forces the em-

beddings of non-neighbor nodes to be different.

In a vertex-centric paradigm, we are required to decompose

the algorithm such that each vertex is responsible for its part of

the objective function evaluation, providing all the necessary

information, e.g., the current state of its neighbors. In other

words, we look at the computation from a vertex point of view.

We can simply view network embedding of Eq. 7 in a vertex-

centric paradigm: “As a vertex, I want my embedding to be

similar to my neighbors’ embeddings, while it differs from the

embeddings of other non-neighbor vertices.”

In a vertex-centric setting for optimizing based on Eq. 7,

each vertex needs to access the embeddings of vertices that are

not directly connected to it (negative sampling). Parallel graph

frameworks do not provide efficient lookup of random vertices

that are distributed among different machines. Moreover, each

compute node does not have a lookup dictionary that can be

used to locate and ship the attributes of required vertices, but

there are routing tables for vertices based on the edges that

are connecting them, so accessing the neighboring vertices is

efficient (compared to random lookup access).

To benefit from this efficiency, we define a random graph,

in which each vertex i is connected to di randomly selected

vertices in the graph with a negative weight, where di is degree

of vertex i. We construct a new graph as the union of the

current graph and the random graph. In the new augmented

graph, each vertex has access to the embedding of di randomly

chosen vertices. Therefore, we can rewrite Eq.7 with our

augmented graph, decomposed over the vertices:

Oi = max
u

∑

j∈A(i)

wiju
T
i uj , (8)

where wij is negative one for negative neighbors and the

weight of the connecting edge for the actual neighbors, and

A(i) is the set of neighbors of vertex i in the augmented graph.

The objective function of Eq. 8 decomposes over vertices in

the augmented graph, so it can be computed in a vertex-centric

approach unlike the negative sampling-based approach in the

original graph, whose objective function is not decomposable.

After each step, we also normalize the embedding so

every embedding has a norm of one. This make sure that

the magnitude of embedding remains bounded, so that the

contribution of vertices in the objective function is similar.

A. Vertex-Centric algorithm

A data-parallel vertex-centric graph algorithm typically

involves three steps: sending messages among neighbors

(sendMessage), reducing all the messages to a single vertex to

one message (mergeMessage), and executing a vertex related

function given the final reduced message and the current state

of the vertex (vertexProgram). The sendMessage is emulated

by mapping each triplet (joint data structure of an edge and

the vertices that are incident with the edges) into a set of

messages. Each message has a key that determines the vertex

id of its destination. The data-parallel engine takes every pair

of messages that are targeted for the same vertex and reduces

them into one message that can be merged with another

message for the same vertex. Finally, at most one message

is left for the target vertex. The vertexProgram takes that

message and the state of the target vertex and produces a new

state for the target vertex. Here, for example, the state is the

embedding of a vertex. The message generation requires map-

reduce operation over triplets, while state update requires join

operation among the old vertex RDD and the message RDD.

We must keep the size of the intermediate structures such as

messages constant with respect to the number of neighbors,

otherwise for graphs with power-law degree distributions, the

message size may become prohibitively large.

In order to compute the partial objective Oi on each

compute node, a naive implementation sends the embedding

of each neighbor to vertex i as sendMessage, keeps the union

of embeddings as the reduceMessage, and optimizes Oi in

the vertexProgram. However, in a map-reduce framework,

combining the embedding vectors can result in prohibitively

large collections since there is no bound on the degree of the

vertices.

This large collection are constructed in the mergeMessage

steps since the vertexProgram is executed only when all the

messages have been passed.

We use a simple trick to avoid the construction of these

large collections by propagating the gradient instead of the

embeddings. However, we first have to make sure that the total

gradient of Eq. 8 can be computed by the vertex programs.

The gradient of Oi can be written as

∇Oi =
∑

j∈A(i)

∇Oi←j , (9)

where

∇Oi←j = wij ∗ uj (10)

Finally we can update the embedding using gradient ascent:

ui = ui + η∇Oi (11)

Using edge triplets, each vertex in the augmented neighbor-

hood A(i) has access to data structures needed for computing

∇Oi←j . Therefore, defining ∇Oi←j as a sendMessage func-

tion and sum as the mergeMessage operation, the final reduced

message for vertex i is Eq. 9. Finally, vertexProgram executes

the gradient update. In this vertex-centric design, the size of

the data structures remains bounded and no large collection

would be constructed in the intermediate steps. Therefore, we

can optimize Eq. 8 for very large graphs with large vertex

degrees. Algorithm 1 shows the definition of these functions.

IV. EXPERIMENTS

We compare our network embedding algorithm, VCNE,

with LINE [4], Node2vec [5] and PyTorch-BigGraph [15] on

medium-size datasets to show the capability of VCNE to learn

meaningful representation. Then, we apply VCNE to very

large graphs for the task of link prediction. Table I reports

the characteristics of the graphs used in our experiments.

139

Algorithm 1 Vertex-Centric Network Embedding

//eji : edge from j to i.
//d: embedding dimension

//msg: (m: |R|d)

//vertex attributes: (u: |R|d)

//mi→j : means the message from i for j
procedure SENDMESSASGE(eij , ui, uj)

mj→i : ∇Oi←j //Eq. 10

procedure MERGEMESSAGES(mi→j , mk→j)

mi→j + mk→j //Eq. 9

procedure VERTEXPROGRAM(u, m)

u← u+ ηm // Eq.11

TABLE I
THE NUMBER OF VERTICES AND EDGES OF THE REAL-WORLD GRAPHS IN

OUR TEST SUITE.

Name Num. of Vertices Num. of Edges

Friendster 68,349,466 2,586,147,869
Twitter-MPI 52,579,682 1,963,263,821
Twitter 41,637,597 1,453,833,084
LiveJournal 5,193,874 48,682,718
Reddit 232,965 11,606,919
PPI 56,944 793,632

A. Vertex Classification

The vertex classification goal is to classify each vertex into

different groups, which includes both multi-class and multi-

label classification.

We use two datasets of protein-protein interaction (PPI) and

Reddit posts. In PPI, the goal is to assign a set of activated

protein functions to each vertex, which are represented using

positional gene sets, motif gene sets, and immunological

signatures [9]. The total number of possible protein functions

is 121, and the vertex feature set size is 50.

Reddit is an online discussion forum in which people

publish posts and comment on others’ posts. In the Reddit

graph, the vertices are the posts and two vertices are adjacent if

a user comments on the posts corresponding to the vertices [9].

The node features include the average word embedding of the

title, all comments of the post and the score of the post as well

as the number of comments on the posts. The total number

of features is 602, and the goal is to assign each vertex to

one of 41 communities. For both PPI and Reddit, we used the

same set of train/val/test as provided by [9]. Table I shows the

characteristics of these two graphs.

We first generate vertex embeddings using LINE,

Node2Vec, Pytorch-BigGraph and VCNE. Next, we concate-

nate the vertex embedding to the vertex features and use it

as input to a logistic regression classifier to predict labels.

As a baseline, we also train logistic regression using only the

vertex features. Although more complex classifiers such as

multi-layer perceptron would be possible and may result in

higher accuracy, we use simple logistic regression to better

isolate the impact of vertex embedding.

We used an embedding dimension of 100 for all algorithms.

TABLE II
F1 SCORE OF VERTEX CLASSIFICATION TASKS USING DIFFERENT

EMBEDDING ALGORITHMS.

PPI Reddit
Vertex features 43.3 51.2
LINE 53.08 63.9
Node2vec 49.8 65.4
PyTorch-BigGraph 52.70 66.3
VCNE 53.28 66.7

Table II shows the performance VCNE, LINE, Node2Vec,

and raw vertex features in terms of their F1 score. For all

embedding algorithm, using the embedding in addition to

vertex features helps, so we can conclude that the embedding

is meaningful and encodes structural properties of the graph.

For both Reddit and PPI, VCNE is more accurate than all

the baselines. We also show the learned embedding by VCNE

using t-SNE [16] in Figure 1. VCNE can capture clear clusters

in the graph.

Fig. 1. The embedding of the Reddit graph generated by VCNE.

B. Link Prediction

Link prediction is an important graph analytic problem, in

which we wish to predict the potential edges in the network.

This problem is of particular interest for social network friend

suggestion or predicting future evolution of graphs.

We constructed a synthetic link prediction dataset, for which

we dropped one percent of the current edges of the graph and

kept the dropped edges as the test set combined with another

set of vertex pairs as the true negative. The size of our negative

set is equal to the size of the dropped set making sure that

we have a balanced test set. We generate the training and

validation sets using the same approach. The remaining edges

of the graph constitute the core graph, on which the network

140

embedding algorithms have been trained. We emphasize that

the training algorithms have not seen the dropped edges. We

first compare LINE, PyTorch-BigGraph and VCNE on the

LiveJournal graph.

TABLE III
LINK PREDICTION FOR LIVEJOURNAL

Precision Recall F1

Jaccard 99.9 82.6 90.4
LINE 90.8 84.9 87.8
Pytorch-BigGraph 92.0 80.7 86.0
VCNE 93.3 88.1 90.6

TABLE IV
THE PERFORMANCE OF LINK PREDICTION USING VCNE

Precision Recall F1

Friendster 84.8 93.5 88.9
Twitter MPI 87.5 84.4 85.9
Twitter 80.7 90.0 85.1

We also use Jacard index to predict an edge: J(u, v) =
N(u)∩N(v)
N(u)∪N(v) , where N(u) is the set of neighbors of vertex

u. Computing the Jacard index requires constructing triplets

whose vertex attributes are sets of neighbor IDs, and for

very large social networks, this results in prohibitively large

messages given the power-law degree distribution of social

networks. Nevertheless, we could compute the Jacard index

for LiveJournal graphs, but not for the other larger graphs.

The cut threshold for deciding the existence of an edge is

selected based on the validation data. For LiveJournal, using

the Jacard index results in 99.2% precision, 71.1% recall, and

F1 score of 83.1%. For the link prediction using embeddings,

we train a 2-layer multi-layer perceptron with 500 hundred

hidden units using the training pairs. We pick the best model

based on the performance on the validation set, and report the

model performance on the test set.

Table III the performance of link prediction for LiveJournal

graph. The Jaccard index has the highest precision, while

VCNE has the best performance in overall F1 score.

Next, we apply VNCE to the very large graphs that cannot

be handled by other approaches and report the results in

Table IV. For all graphs, the F1 score is above 85%.

C. Scalability

To measure the parallel scalability of VCNE over Apache

Spark, we run VCNE for Friendster, Twitter MPI, Twitter, and

LiveJournal with different numbers of Spark workers: 10, 20,

30, and 40. Each worker has access to 20 cores and 75 GB

of memory (for a total number of cores ranging between 200

and 800 and memory ranging from 750 GB to 3 TB). The

University of Oregon Talapas cluster, on which we performed

the experiments, consists of dual Intel Xeon E5-2690v4 nodes

connected with an EDR InfiniBand network.

Figure 2 reports the average runtime for one learning itera-

tion, which includes generating the random graph, combining

the random graph with the original graph, and updating the

embedding using Algorithm 1. We observe that the overhead

of using data-parallel systems such as Apache Spark for

processing mid-size graphs such LiveJournal is considerable,

but increasing the number of workers significantly helps the

processing of larger graphs such as Twitter-MPI and Friend-

ster.

Fig. 2. Average runtime for one training step of VCE with 10 to 40 Spark
workers.

We also study the effect of the dimension of embedding

and the number of negative samples on the running time of

VCNE. These two factors directly affect the performance of

the underlying map-reduce implementation. As we increase

the dimension of embedding the local memory required for

distributed map-reduce operations increases, thus imposing

more overhead on the system. We measure the running time of

10 iterations of training VNCE for the Livejournal graph. We

used 10 workers with 20 cores and 80 GB of memory each.

Figure 3 reports the results, which shows the running time of

VCNE with respect to the dimension of embedding.

We also study the effect of negative sampling on the running

time of VCNE on the Livejournal graph with different numbers

of negative samples. Negative samples increase the size of

augmented graph, thus increasing the number of messages and

the running time (see Figure 4).

Fig. 3. The effect of embedding dimension on the running time for the
Livejournal graph.

141

Fig. 4. The effect of the number of negative samples on the running time for
the Livejournal graph.

D. Implementation Details

Working with iterative algorithm over very large graphs may

result in replicating large collections such as EdgeRDDs in

local memory. It is very important to unpersist the collec-

tion from memory in order to avoid exceeding the available

memory capacity. For example, in the pipeline operations such

graph construction followed by groupEdge, Apache Spark

materializes the first graph and we lose the pointer to it as

it is followed by map operation. It is necessary to observe the

storage memory profile provided by Apache Spark as a part

of its Web UI to make sure that no large collections are left

behind in an iteration.

We observe that unpersisting the RDDs may not force

freeing the memory, and some RDDs may continue to reside

in the memory waiting for the garbage collector. This behavior

becomes critical for iterative algorithms: increasing the mem-

ory usage and activating out-of-core processing, when it is not

truly necessary. Therefore, to enforce evacuating the memory,

we serialize the working RDDs and close the Spark session

at the end of each iteration. This trick is not necessary for

mid-size graphs, however, for the consistency we apply it all

of the reported experiments.

Moreover, operations such as aggregateMessage, which are

used for message passing over graphs requires significant

amount of data shuffling for shipping vertex attributes (em-

beddings) among workers. This results in a large amount of

out-of-core data, which is stored in local storage accessible to

the workers, and limits the size of vertex attributes given a

fixed number of workers.

V. RELATED WORK

Many previous works study network embedding [4], [17],

[5], [9], [11]. However, none of these approaches can handle

very large graphs. Some previous work has algorithmic restric-

tions for scaling to very large graphs: for example, SDNE [17]

learns low-dimensional embedding using autoencoders, and

DeepWalk [3] uses hierarchical softmax to parameterize the

probability distribution of a vertex given its neighbors. LINE

and Node2Vec do not suffer from algorithmic restrictions,

but reimplementing their algorithms for very large graphs is

not trivial.1 The recently introduced PyTorch-BigGraph [15],

however, can be executed for large graphs. PyTorch-BigGraph

partitions the vertices into groups, and then partitions edges

into buckets based on the groups of vertices that each edge

connect. PyTorch-BigGraph then runs traditional network em-

bedding algorithm for buckets that do not share vertex groups

in parallel. It selects negative samples from the same vertex

groups of the same bucket.

Embeddings can be trained for task-specific purposes by

propagating the supervision signal from task loss, e.g., in ver-

tex classification. Many semi-supervised learning algorithms

can be reduced to vertex classification [18]. The graph captures

the similarity among the points, so every vertex represents one

data point, which is either labeled or unlabeled. This problem

is also known as collective classification [19]. Several methods

have been proposed for collective classification, e.g., iterative

classification [19]. Label Propagation [20] is another well-

known algorithm for vertex classification.

Graph Convolutional Networks [21], Graph Attention Net-

works [10], and GraphSage [9] are trained by using this

supervised signal. These algorithms are not designed to learn

embeddings for general purposes and are not scalable to very

large graphs.

VI. CONCLUSIONS

We introduced a new distributed-memory parallel vertex-

centric algorithm for learning network embeddings of very

large graphs using GraphX and Apache Spark. Our algorithm,

VCNE, can easily scale to handle very large graphs (billions

of vertices and edges or larger) by increasing the number of

Apache Spark workers. We also show the VCNE can learn

meaningful representations as demonstrated by the perfor-

mance of two use cases, classification and link prediction.

REFERENCES

[1] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica, “GraphX: Graph processing in a distributed dataflow frame-
work,” in Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI 14, Broomfield, CO,
USA, 2014, pp. 599–613.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[3] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” CoRR, vol. abs/1403.6652, 2014. [Online].
Available: http://arxiv.org/abs/1403.6652

[4] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the 24th
International Conference on World Wide Web. ACM, 2015, pp. 1067–
1077.

[5] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for
networks,” in ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2016.

[6] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson,
“From think like a vertex to think like a graph,” Proceedings of the
VLDB Endowment, vol. 7, no. 3, pp. 193–204, 2013.

1The authors of Node2vec also provide an Apache Spark implementation,
but the implementation is prohibitively slow for very large graphs.

142

[7] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX conference on Networked Systems Design
and Implementation. USENIX Association, 2012.

[8] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, 2010, pp. 135–146.

[9] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems, 2017, pp. 1024–1034.

[10] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” 2018.

[11] A. G. Duran and M. Niepert, “Learning graph representations with
embedding propagation,” in Advances in neural information processing
systems, 2017, pp. 5119–5130.

[12] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation
embeddings for knowledge graph completion,” in Twenty-ninth AAAI
conference on artificial intelligence, 2015.

[13] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information.” in IJCAI, 2015, pp.
2111–2117.

[14] S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-party deep network
representation,” in IJCAI, 2016.

[15] A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, and
A. Peysakhovich, “PyTorch-BigGraph: A Large-scale Graph Embedding
System,” in Proceedings of the 2nd SysML Conference, Palo Alto, CA,
USA, 2019.

[16] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[17] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proceedings of the 22Nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’16. New
York, NY, USA: ACM, 2016, pp. 1225–1234. [Online]. Available:
http://doi.acm.org/10.1145/2939672.2939753

[18] X. Zhu, J. Lafferty, and R. Rosenfeld, Semi-supervised learning with
graphs. Carnegie Mellon University, language technologies institute,
school of computer science, 2005.

[19] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective classification in network data,” AI magazine, vol. 29,
no. 3, p. 93, 2008.

[20] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data
with label propagation,” 2002.

[21] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

143

